Received: April 10, 1982

BESTIMMUNG DER ACIDITATSFUNKTION HOIN KONZENTRIERTEN WASSRIGEN LÖSUNGEN DER 1,3,5-TRIFLUORBENZOL-2,4-DISULFONSAURE

W. HABEL und P. SARTORI

Universität - Gesamthochschule - Duisburg, Fachbereich 6 - Anorganische Chemie, Bismarckstr. 90, D 4100 Duisburg 1 (B.R.D.)

SUMMARY

The acidity function $\rm H_{O}$ for 1,3,5-trifluorobenzene-2,4-disulfonic acid has been determined using the Hammett bases 4-nitro-, 2-nitro-, 4-chloro-2-nitro-, 2,5-dichloro-4-nitro- and 2,6-dichloro-4-nitroanilin in aqueous media. The experimental determination of the $\rm H_{O}$ value was possible up to 65 % 1,3,5-trifluorobenzene-2,4-disulfonic acid. Thereafter it was possible by extrapolation to ascertain the $\rm H_{O}$ values within the concentration range of 65 - 100 % 1,3,5-trifluorobenzene-2,4-disulfonic acid.

ZUSAMMENFASSUNG

Für die 1,3,5-Trifluorbenzol-2,4-Disulfonsäure wurde die Aciditätsfunktion $\rm H_{0}$ in konzentrierten wäßrigen Lösungen mit Hilfe der Hammett-Basen 4-Nitro-, 2-Nitro-, 4-Chlor-2-Nitro- und 2,5-Dichlor-4-Nitroanilin bestimmt. Die experimentelle Ermittlung der $\rm H_{0}$ -Werte gelang bis zu einer Säurekonzentration von 65 Gew.% 1,3,5-Trifluorbenzol-2,4-Disulfonsäure. Darüber hinaus war es möglich, durch Extrapolation die $\rm H_{0}$ -Werte auch für den Konzentrationsbereich 65 - 100 Gew.% 1,3,5-Trifluorbenzol-2,4-Disulfonsäure zu bestimmen.

EINLEITUNG

Im Zuge der Aciditätsuntersuchung vollständig und teilweise fluorierter Benzolsulfonsäuren war die Aciditätsfunktion ${\rm H_O}$ der Pentafluorbenzolsulfonsäure in konzentrierten wäßrigen Lösungen bestimmt worden [1]. Nach der gelungenen präparativen Darstellung von 1,3,5-Trifluorbenzol-2,4-Disulfonsäure [2] war nun die Möglichkeit gegeben, auch für diese interessante Verbindung die Aciditätsfunktion ${\rm H_O}$ in Analogie zur Pentafluorbenzolsulfonsäure in konzentrierten wäßrigen Lösungen zu ermitteln und mit den ${\rm H_O}$ -Werten der Pentafluorbenzolsulfonsäure zu vergleichen.

ERGEBNISSE UND DISKUSSION

Die Bestimmung der Aciditätsfunktion ${\rm H_O}$ als ${\rm H_O}={\rm pK_{BH}}^+$ - log I wurde, wie schon im Falle der Pentafluorbenzolsulfonsäure beschrieben, durchgeführt [1]. Aus den experimentell erhaltenen log I-Werten (Tab. 1) verschiedener Nitroanilinindikatoren eines Hammett'schen Basensatzes bei den entsprechenden in der Tab. 2 aufgeführten ${\lambda_{\rm max}}$ -Werten gelang mit Hilfe der Überlappungsmethode (Figur 1) die Bestimmung der p ${\rm K_{BH}}$ +-Werte der jeweiligen Indikatoren.

Die log I- und pK_{BH} +-Werte schließlich lieferten die von der Säurekonzentration abhängigen Aciditätswerte H_0 der 1,3,5-Trifluorbenzol-2,4-Disulfonsäure, die in der Tabelle 3 im Vergleich zu den H_0 -Werten der Pentafluorbenzolsulfonsäure aufgeführt sind.

Da die 1,3,5-Trifluorbenzol-2,4-Disulfonsäure aus Lös-lichkeitsgründen nur bis zu einer Säurekonzentration von 65 Gew.% UV-spektroskopisch untersucht werden konnte, war es notwendig, den Konzentrationsbereich von 65 - 100 Gew.% durch Extrapolation unter Voraussetzung eines regelmäßigen Kurvenverlaufs der Aciditätsfunktion $H_{\rm O}$ zu bestimmen.

Die auf diese Weise vollständig ermittelte Aciditätsfunktion der 1,3,5-Trifluorbenzol-2,4-Disulfonsäure ist in Figur 2 im Vergleich zur Pentafluorbenzolsulfonsäure dargestellt.

log I-Werte als Funktion der 1,3,5-Trifluorbenzol-2,4-Disulfonsäurekonzentration

TABELLE 1

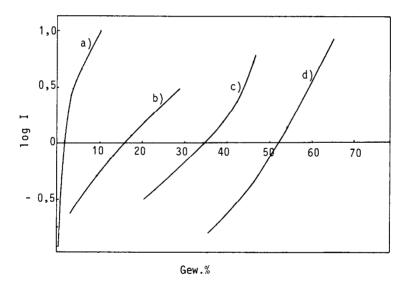

Gew.%	log I	Gew.%	log I
	4-NIT	ROANILIN	
0,17	- 0,91	2,80	0,35
0,32	- 0,63	4,90	0,60
0,45	- 0,50	5,64	0,66
0,91	- 0,17	7,43	0,81
1,41	0,00	9,96	0,99
	2 - N I T	ROANILIN	
3,09	- 0,76	16,37	0,02
5,62	- 0,54	18,32	0,10
7,43	- 0,41	21,13	0,21
9,96	- 0,26	24,21	0,31
12,99	- 0,11	28,52	0,47
	4 - CHL	DR-2-NITROANILIN	
21,13	- 0,50	35,55	0,05
24,21	- 0,39	38,68	0,18
26,67	- 0,30	41,35	0,31
28,52	- 0,23	44,30	0,54
31,36	- 0,13	47,49	0,79
	2,5-D	ICHLOR-4-NITROANIL	. I N
35,55	- 0,78	50,41	- 0,10
38,78	- 0,65	55,69	0,25
41,35	- 0,55	60,02	0,54
44,98	- 0,39	64,93	0,91
47,52	- 0,27		

TABELLE 2

UV-Absorptionen und pK_{BH}+-Werte der Indikatoren bei 25°C

Indikator	λ_{max}	pK _{BH} +		
	(nm)	C ₆ F ₅ SO ₃ H [1]	C ₆ F ₃ H(SO ₃ H) ₂	
4-Nitroanilin	380	0,99 ^a)	0,99 ^{a)}	
2-Nitroanilin	414	- 0,285	- 0,23	
4-Chlor-2-Nitroanilin	427	- 0,80	- 0,93	
2,5-Dichlor-4-Nitroanili	n 371	- 1,89 [5]	- 1,87	

a) übernommen in Anlehnung an [3], [4]

a) 4-Nitroanilin; b) 2-Nitroanilin; c) 4-Chlor-2-Nitroa

d) 2,5-Dichlor-4-Nitroanilin.

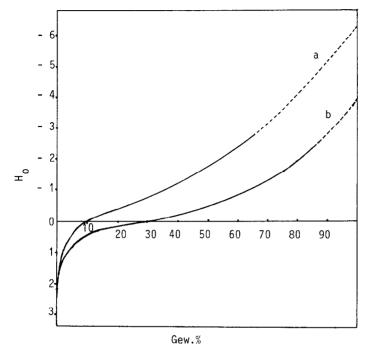

FIGUR 1. log I gegen Gew. ${^{\circ}}$ ${^{\circ}}_6F_3H({^{\circ}}_3H)_2$.

TABELLE 3

Ho-Werte

Gew.% Säure	C ₆ F ₅ SO ₃ H [1]	С ₆ F ₃ H(SO ₃ H) ₂
0,1	2,87	2,50
0,3	1,97	1,60
0,5	1,75	1,40
1,0	1,53	1,15
2,0	1,25	0,83
4,0	0,75	0,48
5,0	0,60	0,38
8,0	0,41	0,13
10,0	0,35	0
12,0	0,29	- 0,09
15,0	0,23	- 0,21
16,0	0,21	- 0,25
20,0	0,15	- 0,40
25,0	0,07	- 0,57
30,0	0	- 0,78
35,0	- 0,08	- 1,00
40,0	- 0,16	- 1,23
45,0	- 0,26	- 1,49
50,0	- 0,39	- 1,74
55,0	- 0,53	- 2,06
60,0	- 0,73	- 2,40
64,0	- 0,94	- 2,69
68,0	- 1,18	- 3,00*
72,0	- 1,45	- 3,34*
76,0	- 1,73	- 3,70*
80,0	- 2,01	- 4,09*
85,0	- 2,45	- 4,59*
90,0	- 2,90*	- 5,15*
95,0	- 3,43*	- 5,71*
100	- 3,98*	- 6,26*

^{*} extrapolierte Werte

a) $C_6F_3H(SO_3H)_2$ b) $C_6F_5SO_3H$

----- experimentell bestimmte H_o-Werte;

FIGUR 2. $\mathrm{H}_{\mathrm{O}}\text{-Werte}$ aufgetragen gegen Säurekonzentration (Gew.%).

Für 100%ige 1,3,5-Trifluorbenzol-2,4-Disulfonsäure wurde ein Aciditätswert von H $_{0}^{=}$ - 6,26 bestimmt, der um 2,28 logarithmische Einheiten niedriger liegt als der entsprechende H $_{0}$ -Wert der Pentafluorbenzolsulfonsäure bei H $_{0}^{=}$ - 3,98.

EXPERIMENTELLER TEIL

Indikatoren

Die kommerziell erhältlichen Hammett-Indikatoren 4-Nitroanilin, 2-Nitroanilin, 4-Chlor-2-Nitroanilin und 2,5-Dichlor4-Nitroanilin wurden durch Umkristallisation in Ethanol und anschließender Sublimation gereinigt. Ihre Schmelzpunkte stimmten mit den in der Literatur beschriebenen überein.

1,3,5-Trifluorbenzol-2,4-Disulfonsäure [2]

39,6 g 1,3,5-Trifluorbenzol wurden mit 51 g flüssigem SO_3 in einem Zweihalskolben mit Rückflußkühler unter Feuchtigkeitsausschluß für 24 h bei einer Temperatur von 110 °C gehalten. Das auf Eis gegossene Reaktionsgemisch wurde mit BaCO $_3$ neutralisiert, BaSO $_4$ abfiltriert und die Bariumsalzlösung über einen Kationenaustauscher (Lewatit S 100) gegeben. Das Eluat wurde mit Aktivkohle behandelt, filtriert und am Rotationsverdampfer eingeengt. Weiteres Entwässern im Hochvakuum lieferte eine schneeweiße Verbindung der Zusammensetzung $C_6F_3H(SO_3H)_2 \cdot 3H_2O$. Ausbeute: 98 %, Schmp. 140 °C.

UV-spektroskopische Messung

Die UV-spektroskopische Bestimmung des Quotienten $I = \frac{[BH^+]}{[B]} \text{ wurde in Analogie zu [1] mit einem Gerät Perkin} \\ Elmer 576 durchgeführt.$

DANKSAGUNG

Für die Unterstützung unserer Arbeit mit Sach- und Personalmitteln danken wir der Deutschen Forschungsgemeinschaft, dem Minister für Wissenschaft und Forschung des Landes Nord-rhein-Westfalen, der Universität - Gesamthochschule - Duisburg sowie dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie.

LITERATUR

- 1 W. Habel, P. Sartori, J. Fluorine Chem. <u>19</u>, 311 (1982).
- P. Sartori, G. Bauer, J. Fluorine Chem. <u>12</u>, 203 (1978); ibid. <u>14</u>, 201 (1979).
- 3 M.J. Jorgensen, D.R. Hartter, J. Am. Chem. Soc. <u>85</u>, 878 (1963).
- 4 M.A. Paul, F.A. Long, Chem. Rev. <u>57</u>, 1 (1957).
- 5 W. Habel, P. Sartori, J. Fluorine Chem., im Druck.